… now, a group of researchers at the University of Illinois Chicago reports that it has verified a critical measurement: the apparent vanishing of electrical resistance.
This result does not prove that the material is a room-temperature superconductor, but it may motivate other scientists to take a closer look.
Ranga P. Dias, a professor of mechanical engineering and physics at the University of Rochester in New York and a key figure in the original research, had reported that the material appeared to be a superconductor at temperatures as warm as 70 degrees Fahrenheit — much warmer than other superconductors — when squeezed at a pressure of 145,000 pounds per square inch, or about 10 times what is exerted at the bottom of the ocean’s deepest trenches.
The high pressure means the material is unlikely to find practical use, but if the discovery is true, it could point the way to other superconductors that truly work in everyday conditions.
The high pressure means the material is unlikely to find practical use, but if the discovery is true, it could point the way to other superconductors that truly work in everyday conditions.